News Nation Logo
Banner
Banner

डीप न्यूरल नेटवर्क इंसानों की तरह दिखते हैं, मगर इनका प्रभाव अलग है : आईआईएससी स्टडी

भारतीय विज्ञान संस्थान (आईआईएससी) में सेंटर फॉर न्यूरोसाइंस (सीएनएस) के शोधकर्ताओं की एक टीम ने हाल ही में मनुष्यों की गहरी तंत्रिका नेटवर्क की दृश्य धारणा (विजुअल पर्सेप्शन) की तुलना करने के लिए एक अध्ययन किया.

IANS | Edited By : Dalchand Kumar | Updated on: 23 Apr 2021, 09:33:52 AM
Mind

प्रतीकात्मक तस्वीर (Photo Credit: फाइल फोटो)

बेंगलुरू:

भारतीय विज्ञान संस्थान (आईआईएससी) में सेंटर फॉर न्यूरोसाइंस (सीएनएस) के शोधकर्ताओं की एक टीम ने हाल ही में मनुष्यों की गहरी तंत्रिका नेटवर्क की दृश्य धारणा (विजुअल पर्सेप्शन) की तुलना करने के लिए एक अध्ययन किया और प्रयोगों की श्रृंखला आयोजित करने के बाद उन्होंने निष्कर्ष निकाला है कि गहरी तंत्रिका (डीप न्यूरल) नेटवर्क दृश्य धारणा मनुष्यों से अलग है. सीएनएस में आईआईएससी के एसोसिएट प्रोफेसर और शोधकर्ताओं की टीम का नेतृत्व करने वाले एस. पी. अरुण के अनुसार, डीप न्यूरल नेटवर्क मशीन लर्निंग सिस्टम है, जो मानव मस्तिष्क में मस्तिष्क कोशिकाओं या न्यूरॉन्स के नेटवर्क से प्रेरित होते हैं, जिन्हें विशिष्ट कार्य करने के लिए प्रशिक्षित किया जा सकता है.

यह भी पढ़ें: LIVE: दिल्ली के गंगा राम अस्पताल में 24 घंटे में 25 मरीजों की मौत

एक जर्नल नेचर कम्युनिकेशंस में प्रकाशित टीम के अध्ययन में कहा गया है कि गहरे नेटवर्क यह समझने के लिए एक अच्छा मॉडल है कि मानव मस्तिष्क वस्तुओं की कल्पना कैसे करता है और किस प्रकार से यह बाद वाले से अलग काम करता है. अरुण ने दावा करते हुए कहा, 'हालांकि जटिल संगणना उनके लिए मामूली है, कुछ कार्य जो मनुष्यों के लिए अपेक्षाकृत आसान हैं, उनके लिए इन नेटवर्क को पूरा करना मुश्किल हो सकता है.'

उन्होंने कहा, 'इन नेटवर्कों ने वैज्ञानिकों को यह समझने में महत्वपूर्ण भूमिका निभाई है कि हमारा दिमाग उन चीजों को कैसे देखता है, जो हम देखते हैं. हालांकि पिछले दशक में डीप नेटवर्क काफी विकसित हुए हैं, फिर भी वे ²श्य संकेतों को समझने में मानव मस्तिष्क के साथ प्रदर्शन के करीब नहीं हैं. टीम ने मानव मस्तिष्क के साथ इन डीप नेटवर्क के विभिन्न गुणात्मक गुणों की तुलना की है.'

यह भी पढ़ें: कोरोना से बिगड़े हालातों पर सुप्रीम कोर्ट आज भी करेगा सुनवाई, कल मांगा था केंद्र से जवाब 

उनकी टीम ने 13 विभिन्न अवधारणात्मक प्रभावों का अध्ययन किया और डीप नेटवर्क एवं मानव मस्तिष्क के बीच पहले से अज्ञात गुणात्मक अंतरों को उजागर किया. अरुण और उनकी टीम ने यह समझने का प्रयास किया कि इन नेटवर्क द्वारा स्वाभाविक रूप से उनकी वास्तुकला के आधार पर कौन से ²श्य कार्य किए जा सकते हैं और जिन्हें आगे प्रशिक्षण की आवश्यकता है. अध्ययन के वरिष्ठ लेखक अरुण ने दावा करते हुए कहा, 'बहुत सारे अध्ययन डीप नेटवर्क और दिमाग के बीच समानताएं दिखाते रहे हैं, लेकिन किसी ने भी वास्तव में व्यवस्थित अंतर को नहीं देखा है.'

उन्होंने कहा कि इन अंतरों की पहचान हमें इन नेटवर्क को मस्तिष्क जैसा बनाने के अधिक करीब ला सकती है. सीएनएस में पहले लेखक और पीएचडी छात्र जॉर्जिन जैकब ने बताया कि डीप तंत्रिका नेटवर्क ने कंप्यूटर विजन में क्रांतिकारी बदलाव किया है और परतों के पार उनकी वस्तु प्रतिनिधित्व (ऑब्जेक्ट रिप्रजेंटेशन) मस्तिष्क में विजुअल कॉर्टिकल एरिया के साथ मोटे तौर पर मेल खाते हैं. उन्होंने कहा, 'हालांकि, क्या ये प्रजेंटेशन मानव धारणा में देखे गए गुणात्मक पैटर्न प्रदर्शित करते हैं या फिर मस्तिष्क के प्रजेंटेशन प्रदर्शित करते हैं, यह चीज अभी भी अनसुलझी है.'

यह भी पढ़ें: मुंबई से सटे विरार के कोविड अस्पताल के ICU में लगी भीषण आग, 13 मरीजों की मौत 

जैकब ने कहा कि मानव मस्तिष्क के लिए एक और घटना यह है कि यह पहले मोटे विवरण पर केंद्रित होता है. उन्होंने उदाहरण पेश करते हुए कहा, 'इसे ग्लोबल एडवांटेज इफेक्ट के रूप में जाना जाता है. उदाहरण के लिए, एक पेड़ की तस्वीर को देखा जाए तो सबसे पहले हमारा मस्तिष्क पत्तियों के विवरण को नोट करने से पहले पेड़ को पूरी तरह से देखेगा. इसी तरह, जब एक चेहरे की तस्वीर प्रस्तुत की जाती है तो मनुष्य पहले चेहरे को एक पूरे रूप में देखते हैं और फिर आंख, नाक, मुंह जैसे बारीक विवरणों पर ध्यान केंद्रित करते हैं.'

उन्होंने कहा कि आश्चर्यजनक रूप से, तंत्रिका नेटवर्क ने एक स्थानीय लाभ दिखाया जिसका अर्थ है कि मस्तिष्क के विपरीत, नेटवर्क पहले एक तस्वीर के बारीक विवरण पर ध्यान केंद्रित करते हैं. उन्होंने कहा, 'इसलिए, भले ही ये तंत्रिका नेटवर्क और मानव मस्तिष्क समान ऑब्जेक्ट मान्यता कार्यों को पूरा करते हैं, मगर दोनों के बाद के चरण बहुत अलग हैं.' उनके अध्ययन से यह भी पता चलता है कि डीप तंत्रिका नेटवर्क ने ऑब्जेक्ट-रिकग्निशन टास्क पर मानव जैसी सटीकता के साथ कंप्यूटर विजन में क्रांति ला दी है और उनके ऑब्जेक्ट रिप्रजेंटेशन मस्तिष्क के साथ मेल खाते हैं.

First Published : 23 Apr 2021, 09:33:52 AM

For all the Latest Health News, Download News Nation Android and iOS Mobile Apps.